Publications

[NCBI PubMed] [Google Scholar]

Gardner JG. 2024. Microbe Profile: Cellvibrio japonicus: living the sweet life via biomass break-down. Microbiology. 170(3):001450.
[Abstract]

Novak JK and Gardner JG. 2024. Current models in bacterial hemicellulase-encoding gene regulation. Applied Microbiology and Biotechnology. 108(1):1–16. DOI: 10.1007/s00253-023-12977-4.
[Abstract]

Mascelli GM, Garcia CA, and Gardner JG. 2023. Genetic and enzymatic characterization of Amy13E from Cellvibrio japonicus reclassified it as a cyclodextrinase also capable of α-diglucoside degradation. Applied and Environmental Microbiology. 90(1):e0152123.
[Abstract]

Garcia CA and Gardner JG. 2023. RNAseq analysis of Cellvibrio japonicus during starch utilization differentiates between genes encoding carbohydrate active enzymes controlled by substrate detection or growth rate. Microbiology Spectrum. 11(6):e0245723.
[Abstract]

Novak JK and Gardner JG. 2023. Galactomannan utilization by Cellvibrio japonicus relies on a single essential α-galactosidase encoded by the aga27A gene. Molecular Microbiology. 119(3):312-325.
[Abstract]

Novak JK and Gardner JG. 2022. Draft genome sequence of a Serratia marcescens strain (PIC3611) proficient at recalcitrant polysaccharide utilization. Microbiology Resource Announcements. 11(7);e0030622.
[Abstract]

Gardner JG and Schreier HJ. 2021. Unifying themes and distinct features of carbon and nitrogen assimilation by polysaccharide-degrading bacteria: a summary of four model systems. Applied Microbiology and Biotechnology. 105:8109-8127.
[Abstract]

Garcia CA and Gardner JG. 2021. Development and evaluation of an agar capture system (ACS) for high-throughput screening of insoluble particulate substrates with bacterial growth and enzyme activity assays. Journal of Microbiological Methods. 190:106337.
[Abstract]

Garcia CA and Gardner JG. 2021. Bacterial α-diglucoside metabolism: perspectives and potential for biotechnology and biomedicine. Applied Microbiology and Biotechnology. 105(10):4033-4052.
[Abstract]

Monge EC and Gardner JG. 2021. Efficient chito-oligosaccharide utilization requires two TonB-dependent transporters and one hexosaminidase in Cellvibrio japonicus. Molecular Microbiology. 116(2):366-380.
[Abstract]

Garcia CA, Narrett JA, and Gardner JG. 2020. Trehalose degradation in Cellvibrio japonicus exhibits no functional redundancy and is solely dependent on the Tre37A enzyme. Applied and Environmental Microbiology. 86(22):e01639-20.
[Abstract]

Hwang J, Hari A, Cheng R, Gardner JG, and Lobo D. 2020. Kinetic modeling of microbial growth, enzyme activity, and gene deletions: An integrated model of β-glucosidase function in Cellvibrio japonicus. Biotechnology and Bioengineering. 117(12):3876-3890.
[Abstract]

Monge EC, Levi M, Forbin JN, Legesse MD, Udo BA, deCarvalho TN, and Gardner JG. 2020. High-throughput screening of environmental polysaccharide-degrading bacteria using biomass containment and complex insoluble substrates. Applied Microbiology and Biotechnology. 104(8):3379-3389.
[Abstract]

Garcia CA, Narrett JA, and Gardner JG. 2019. Complete Genome Sequences of Cellvibrio japonicus Strains with Improved Growth When Using α-Diglucosides. Microbiology Resource Announcements. 8(44):e01077-19.
[Abstract]

Attia MA, Nelson CE, Offen WA, Jain N, Davies GJ, Gardner JG, and Brumer H. 2018. In vitro and in vivo characterization of three Cellvibrio japonicus glycoside hydrolase family 5 members reveals potent xyloglucan backbone cleaving functions. Biotechnology for Biofuels. 11:45.
[Abstract]

Monge EC, Tuveng TR, Vaaje-Kolstad G, Eijsink VGH, and Gardner JG. 2018. Systems analysis of the Glycoside Hydrolase family 18 enzymes from Cellvibrio japonicus characterizes essential chitin degradation functions. Journal of Biological Chemistry. 293(10):3849-59.
[Abstract]

Blake AD, Beri NR, Guttman HS, Cheng R, and Gardner JG. 2017. The complex physiology of Cellvibrio japonicus xylan degradation relies on a single cytoplasmic β-xylosidase for xylo-oligosaccharide utilization. Molecular Microbiology. 107(5):610-22.
[Abstract]

Nelson CE, Attia MA, Rogowski A, Morland C, Brumer H, and Gardner JG. 2017. Comprehensive functional characterization of the Glycoside Hydrolase Family 3 enzymes from Cellvibrio japonicus reveals unique metabolic roles in biomass saccharification. Environmental Microbiology. 19(12):5025-39.
[Abstract]

Nelson CE, Rogowski A, Morland C, Wilhide JA, Gilbert HJ, and Gardner JG. 2017. Systems analysis in Cellvibrio japonicus resolves predicted redundancy of β-glucosidases and determines essential physiological functions. Molecular Microbiology. 104(2):294-05.
[Abstract]

Nelson CE, Beri NR, and Gardner JG. 2016. Custom fabrication of biomass containment devices using 3-D printing enables bacterial growth analyses with complex insoluble substrates. Journal of Microbiological Methods. 130:136-43.
[Abstract]

Gardner JG. 2016. Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus. World Journal of Microbiology and Biotechnology. 32(7):121-32.
[Abstract]

Tuveng TR, Arntzen MØ, Gardner JG, Vaaje-Kolstad G, and Eijsink VGH. 2016. Proteomic investigation of the secretome of Cellvibrio japonicus during growth on chitin. Proteomics. 16(13):1904-14.
[Abstract]

Forsberg Z, Nelson CE, Dalhus B, Mekasha S, Loose JSM, Crouch L, Røhr AK, Gardner JG, Eijsink VGH, and Vaaje-Kolstad G. 2016. Structural and Functional Analysis of a Lytic Polysaccharide Monooxygenase Important for Efficient Utilization of Chitin in Cellvibrio japonicus. Journal of Biological Chemistry. 291(14):7300-12.
[Abstract]

Nelson CE and Gardner JG. 2015. In-frame deletions allow functional characterization of complex cellulose degradation phenotypes in Cellvibrio japonicus. Applied and Environmental Microbiology. 81(17): 5968-75.
[Abstract]

Larsbrink J, Thompson AJ, Lundqvist M, Gardner JG, Davies GJ, and Brumer H. 2014. A complex gene locus enables xyloglucan utilization in the model saprophyte Cellvibrio japonicus. Molecular Microbiology. 95(2):418-33.
[Abstract]

Gardner JG, Crouch L, Labourel A, Forsberg Z, Bukhman, YV, Vaaje-Kolsatad G, Gilbert HJ, and Keating DH. 2014. Systems biology defines the biological significance of redox-active proteins during cellulose degradation in an aerobic bacterium. Molecular Microbiology. 95(5):1121-33.
[Abstract]

Haitjema CH, Boock JT, Dominguez MA, Withers ST, Gardner JG, Keating DH and DeLisa MP. 2014. A universal genetic assay for engineering extracellular protein expression. ACS Synthetic Biology. 3(2):74-82
[Abstract]

Gardner JG and Keating DH. 2012. Genetic and functional genomic approaches for the study of plant cell wall degradation in Cellvibrio japoniucsMethods in Enzymology. 510:331-47.
[Abstract]

Haft RJF, Gardner JG, and Keating DH. 2012. Quantitative colorimetric measurement of cellulose degradation under microbial culture conditions. Applied Microbiology and Biotechnology. 94(1):223-29.
[Abstract]

Gardner JG, Zeitler LA, Wigstrom WJ, Engel KC, and Keating DH. 2012. A high-throughput solid phase screening method for identification of lignocellulose-degrading bacteria from environmental isolates. Biotechnology Letters. 34(1):81-89.
[Abstract]

Gardner JG and Keating DH. 2010. Requirement of the type II secretion system for utilization of cellulosic substrates by Cellvibrio japonicusApplied and Environmental Microbiology. 76:5079-87.
[Abstract]

Gardner JG and Escalante-Semerena JC. 2009. In Bacillus subtilis, the sirtuin protein deacetylase encoded by the srtN gene (formerly yhdZ), and functions encoded by the acuABC genes control the activity of acetyl-CoA synthetase. Journal of Bacteriology. 191:1749-55.
[Abstract]

Gardner JG and Escalante-Semerena JC. 2008. Biochemical and mutational analysis of AcuA, the acetyltransferase enzyme that controls the activity of the acetyl-CoA synthetase (AcsA) in Bacillus subtilis. Journal of Bacteriology. 190:5132-36.
[Abstract]

Garrity J, Gardner JG, Hawse W, Wolberger C, and Escalante-Semerena JC. 2007. N-lysine propionylation controls the activity of propionyl-CoA synthetase. Journal of Biological Chemistry. 282:30239-45.
[Abstract]

Gardner JG, Grundy FJ, Henkin TM, and Escalante-Semerena JC. 2006 Control of acetyl-coenzyme A synthetase (AcsA) activity by acetylation/deacetylation without NAD(+) involvement in Bacillus subtilis. Journal of Bacteriology. 188:5460-08.
[Abstract]

Starai VJ, Gardner JG, and Escalante-Semerena JC. 2005.  Residue Leu-641 of Acetyl- CoA synthetase is critical for the acetylation of residue Lys-609 by the protein acetyltransferase enzyme of Salmonella enterica. Journal of Biological Chemistry. 280:26200-05.
[Abstract]