Publications

[NCBI PubMed] [Google Scholar]

Gardner JG and Schreier HJ. 2021. Unifying themes and distinct features of carbon and nitrogen assimilation by polysaccharide-degrading bacteria: a summary of four model systems. Applied Microbiology and Biotechnology. In Press. DOI: 10.1007/s00253-021-11614-2.
[Abstract]

Garcia CA and Gardner JG. 2021. Development and evaluation of an agar capture system (ACS) for high-throughput screening of insoluble particulate substrates with bacterial growth and enzyme activity assays. Journal of Microbiological Methods. 190:106337.
[Abstract]

Garcia CA and Gardner JG. 2021. Bacterial α-diglucoside metabolism: perspectives and potential for biotechnology and biomedicine. Applied Microbiology and Biotechnology. 105(10):4033-4052.
[Abstract]

Monge EC and Gardner JG. 2021. Efficient chito-oligosaccharide utilization requires two TonB-dependent transporters and one hexosaminidase in Cellvibrio japonicus. Molecular Microbiology. 116(2):366-380.
[Abstract]

Garcia CA, Narrett JA, and Gardner JG. 2020. Trehalose degradation in Cellvibrio japonicus exhibits no functional redundancy and is solely dependent on the Tre37A enzyme. Applied and Environmental Microbiology. 86(22):e01639-20.
[Abstract]

Hwang J, Hari A, Cheng R, Gardner JG, and Lobo D. 2020. Kinetic modeling of microbial growth, enzyme activity, and gene deletions: An integrated model of β-glucosidase function in Cellvibrio japonicus. Biotechnology and Bioengineering. 117(12):3876-3890.
[Abstract]

Monge EC, Levi M, Forbin JN, Legesse MD, Udo BA, deCarvalho TN, and Gardner JG. 2020. High-throughput screening of environmental polysaccharide-degrading bacteria using biomass containment and complex insoluble substrates. Applied Microbiology and Biotechnology. 104(8):3379-3389.
[Abstract]

Garcia CA, Narrett JA, and Gardner JG. 2019. Complete Genome Sequences of Cellvibrio japonicus Strains with Improved Growth When Using α-Diglucosides. Microbiology Resource Announcements. 8(44):e01077-19.
[Abstract]

Attia MA, Nelson CE, Offen WA, Jain N, Davies GJ, Gardner JG, and Brumer H. 2018. In vitro and in vivo characterization of three Cellvibrio japonicus glycoside hydrolase family 5 members reveals potent xyloglucan backbone cleaving functions. Biotechnology for Biofuels. 11:45.
[Abstract]

Monge EC, Tuveng TR, Vaaje-Kolstad G, Eijsink VGH, and Gardner JG. 2018. Systems analysis of the Glycoside Hydrolase family 18 enzymes from Cellvibrio japonicus characterizes essential chitin degradation functions. Journal of Biological Chemistry. 293(10):3849-59.
[Abstract]

Blake AD, Beri NR, Guttman HS, Cheng R, and Gardner JG. 2017. The complex physiology of Cellvibrio japonicus xylan degradation relies on a single cytoplasmic β-xylosidase for xylo-oligosaccharide utilization. Molecular Microbiology. 107(5):610-22.
[Abstract]

Nelson CE, Attia MA, Rogowski A, Morland C, Brumer H, and Gardner JG. 2017. Comprehensive functional characterization of the Glycoside Hydrolase Family 3 enzymes from Cellvibrio japonicus reveals unique metabolic roles in biomass saccharification. Environmental Microbiology. 19(12):5025-39.
[Abstract]

Nelson CE, Rogowski A, Morland C, Wilhide JA, Gilbert HJ, and Gardner JG. 2017. Systems analysis in Cellvibrio japonicus resolves predicted redundancy of β-glucosidases and determines essential physiological functions. Molecular Microbiology. 104(2):294-05.
[Abstract]

Nelson CE, Beri NR, and Gardner JG. 2016. Custom fabrication of biomass containment devices using 3-D printing enables bacterial growth analyses with complex insoluble substrates. Journal of Microbiological Methods. 130:136-43.
[Abstract]

Gardner JG. 2016. Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus. World Journal of Microbiology and Biotechnology. 32(7):121-32.
[Abstract]

Tuveng TR, Arntzen MØ, Gardner JG, Vaaje-Kolstad G, and Eijsink VGH. 2016. Proteomic investigation of the secretome of Cellvibrio japonicus during growth on chitin. Proteomics. 16(13):1904-14.
[Abstract]

Forsberg Z, Nelson CE, Dalhus B, Mekasha S, Loose JSM, Crouch L, Røhr AK, Gardner JG, Eijsink VGH, and Vaaje-Kolstad G. 2016. Structural and Functional Analysis of a Lytic Polysaccharide Monooxygenase Important for Efficient Utilization of Chitin in Cellvibrio japonicus. Journal of Biological Chemistry. 291(14):7300-12.
[Abstract]

Nelson CE and Gardner JG. 2015. In-frame deletions allow functional characterization of complex cellulose degradation phenotypes in Cellvibrio japonicus. Applied and Environmental Microbiology. 81(17): 5968-75.
[Abstract]

Larsbrink J, Thompson AJ, Lundqvist M, Gardner JG, Davies GJ, and Brumer H. 2014. A complex gene locus enables xyloglucan utilization in the model saprophyte Cellvibrio japonicus. Molecular Microbiology. 95(2):418-33.
[Abstract]

Gardner JG, Crouch L, Labourel A, Forsberg Z, Bukhman, YV, Vaaje-Kolsatad G, Gilbert HJ, and Keating DH. 2014. Systems biology defines the biological significance of redox-active proteins during cellulose degradation in an aerobic bacterium. Molecular Microbiology. 95(5):1121-33.
[Abstract]

Haitjema CH, Boock JT, Dominguez MA, Withers ST, Gardner JG, Keating DH and DeLisa MP. 2014. A universal genetic assay for engineering extracellular protein expression. ACS Synthetic Biology. 3(2):74-82
[Abstract]

Gardner JG and Keating DH. 2012. Genetic and functional genomic approaches for the study of plant cell wall degradation in Cellvibrio japoniucsMethods in Enzymology. 510:331-47.
[Abstract]

Haft RJF, Gardner JG, and Keating DH. 2012. Quantitative colorimetric measurement of cellulose degradation under microbial culture conditions. Applied Microbiology and Biotechnology. 94(1):223-29.
[Abstract]

Gardner JG, Zeitler LA, Wigstrom WJ, Engel KC, and Keating DH. 2012. A high-throughput solid phase screening method for identification of lignocellulose-degrading bacteria from environmental isolates. Biotechnology Letters. 34(1):81-89.
[Abstract]

Gardner JG and Keating DH. 2010. Requirement of the type II secretion system for utilization of cellulosic substrates by Cellvibrio japonicusApplied and Environmental Microbiology. 76:5079-87.
[Abstract]

Gardner JG and Escalante-Semerena JC. 2009. In Bacillus subtilis, the sirtuin protein deacetylase encoded by the srtN gene (formerly yhdZ), and functions encoded by the acuABC genes control the activity of acetyl-CoA synthetase. Journal of Bacteriology. 191:1749-55.
[Abstract]

Gardner JG and Escalante-Semerena JC. 2008. Biochemical and mutational analysis of AcuA, the acetyltransferase enzyme that controls the activity of the acetyl-CoA synthetase (AcsA) in Bacillus subtilis. Journal of Bacteriology. 190:5132-36.
[Abstract]

Garrity J, Gardner JG, Hawse W, Wolberger C, and Escalante-Semerena JC. 2007. N-lysine propionylation controls the activity of propionyl-CoA synthetase. Journal of Biological Chemistry. 282:30239-45.
[Abstract]

Gardner JG, Grundy FJ, Henkin TM, and Escalante-Semerena JC. 2006 Control of acetyl-coenzyme A synthetase (AcsA) activity by acetylation/deacetylation without NAD(+) involvement in Bacillus subtilis. Journal of Bacteriology. 188:5460-08.
[Abstract]

Starai VJ, Gardner JG, and Escalante-Semerena JC. 2005.  Residue Leu-641 of Acetyl- CoA synthetase is critical for the acetylation of residue Lys-609 by the protein acetyltransferase enzyme of Salmonella enterica. Journal of Biological Chemistry. 280:26200-05.
[Abstract]